Analysis of human cytochrome P450 3A4 cooperativity: construction and characterization of a site-directed mutant that displays hyperbolic steroid hydroxylation kinetics.
نویسندگان
چکیده
Cytochrome P450 3A4 is generally considered to be the most important human drug-metabolizing enzyme and is known to catalyze the oxidation of a number of substrates in a cooperative manner. An allosteric mechanism is usually invoked to explain the cooperativity. Based on a structure-activity study from another laboratory using various effector-substrate combinations and on our own studies using site-directed mutagenesis and computer modeling of P450 3A4, the most likely location of effector binding is in the active site along with the substrate. Our study was designed to test this hypothesis by replacing residues Leu-211 and Asp-214 with the larger Phe and Glu, respectively. These residues were predicted to constitute a portion of the effector binding site, and the substitutions were designed to mimic the action of the effector by reducing the size of the active site. The L211F/D214E double mutant displayed an increased rate of testosterone and progesterone 6beta-hydroxylation at low substrate concentrations and a decreased level of heterotropic stimulation elicited by alpha-naphthoflavone. Kinetic analyses of the double mutant revealed the absence of homotropic cooperativity with either steroid substrate. At low substrate concentrations the steroid 6beta-hydroxylase activity of the wild-type enzyme was stimulated by a second steroid, whereas L211F/D214E displayed simple substrate inhibition. To analyze L211F/D214E at a more mechanistic level, spectral binding studies were carried out. Testosterone binding by the wild-type enzyme displayed homotropic cooperativity, whereas substrate binding by L211F/D214E displayed hyperbolic behavior.
منابع مشابه
Dual role of human cytochrome P450 3A4 residue Phe-304 in substrate specificity and cooperativity.
The structural basis of cooperativity of progesterone hydroxylation catalyzed by human cytochrome P450 3A4 has been investigated. A recent study suggested that substitution of larger side chains at positions Leu-211 and Asp-214 partially mimics the action of effector by reducing the size of the active site. Based on predictions from molecular modeling that Phe-304 in the highly conserved I heli...
متن کاملMolecular basis of P450 inhibition and activation: implications for drug development and drug therapy.
Three-dimensional homology models of cytochromes P450 (P450) 2B1 and P450 3A4 have been utilized along with site-directed mutagenesis to elucidate the molecular determinants of substrate specificity. Most of the key residues identified in 2B enzymes fall within five substrate recognition sites (SRSs) and have counterparts in bacterial P450 residues that regulate substrate binding or access. Doc...
متن کاملKinetics and thermodynamics of ligand binding by cytochrome P450 3A4.
Cytochrome P450 (P450) 3A4, the major catalyst involved in human drug oxidation, displays substrate- and reaction-dependent homotropic and heterotropic cooperative behavior. Although several models have been proposed, these mainly rely on steady-state kinetics and do not provide information on the contribution of the individual steps of P450 catalytic cycle to the observed cooperativity. In thi...
متن کاملConcurrent Cooperativity and Substrate Inhibition in the Epoxidation of Carbamazepine by Cytochrome P450 3A4 Active Site Mutants Inspired by Molecular Dynamics Simulations
Cytochrome P450 3A4 (CYP3A4) is the major human P450 responsible for the metabolism of carbamazepine (CBZ). To explore the mechanisms of interactions of CYP3A4 with this anticonvulsive drug, we carried out multiple molecular dynamics (MD) simulations, starting with the complex of CYP3A4 manually docked with CBZ. On the basis of these simulations, we engineered CYP3A4 mutants I369F, I369L, A370V...
متن کاملDrug interactions of thalidomide with midazolam and cyclosporine A: heterotropic cooperativity of human cytochrome P450 3A5.
There is growing clinical interest of thalidomide because of its immunomodulatory and antiangiogenic properties, despite its teratogenicity. However, little information about thalidomide has been reported regarding its precise effects on drug-metabolizing enzymes. We investigated the effects of thalidomide on cytochrome P450 (P450) enzymes in human liver microsomes to clarify the potential for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 12 شماره
صفحات -
تاریخ انتشار 1998